Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (СВ) - Большая Советская Энциклопедия "БСЭ" - Страница 79
Связанные системы
Свя'занные систе'мы колебательные, колебательные системыс двумя и более степенями свободы, рассматриваемые как совокупность систем с одной степенью свободы каждая (парциальных систем), взаимодействующих между собой. По характеру колебаний в каждой из парциальных систем можно сделать заключение о некоторых характерных чертах колебаний в исходной С. с. Пример С. с. — два или несколько колебательных контуров (рис.), у которых колебания в одном контуре из-за наличия связи вызывают колебания в других контурах. В С. с. имеет место переход энергии из одного контура в другой. Наличие связи изменяет характер резонансных явлений в С. с. по сравнению с простым одиночным контуром. В С. с. резонанс наступает всякий раз, когда частота внешнего воздействия (эдс) совпадает с одной из частот собственных колебаний всей системы. Например, в С. с., состоящей из двух контуров, резонанс наступает на двух различных частотах.
Схемы простейших колебательных систем: а — индуктивная связь; б — ёмкостная связь; С — ёмкости; L — индуктивности.
Связанный вектор
Свя'занный ве'ктор, см. Вектор.
Связи
Свя'зи в строительных конструкциях, соединительные элементы, обеспечивающие устойчивость основных (несущих) конструкций каркаса и пространственную жёсткость сооружения в целом. С. обеспечивают также перераспределение нагрузок, приложенных к одному или нескольким конструктивным элементам, на соседние элементы и всё сооружение. Система С. обычно состоит из стержневых систем (ферм, порталов) и отдельных стержней (раскосов, распорок и др.). Наиболее часто С. применяют в стальных конструкциях и деревянных конструкциях.
В покрытиях промышленных и общественных зданий с несущими конструкциями в виде плоских ферм или решётчатых ригелей рам, которые могут выпучиваться из плоскости конструкции, предусматривается система горизонтальных (по верхним и нижним поясам конструкции) и вертикальных С. Такой системой С. обычно соединяют две несущие стропильные конструкции, образуя пространственный блок, обладающий достаточной жёсткостью по отношению к изгибу в горизонтальной плоскости и кручению; с этим блоком при помощи прогонов, распорок или тяжей соединяют остальные несущие конструкции покрытия. Для предотвращения выпучивания поперечных рам зданий из их плоскости и восприятия продольных нагрузок, возникающих при ветре и торможении мостовых кранов (например, в одноэтажных промышленных зданиях со стальным или железобетонным каркасом), устанавливают также вертикальные С. по колоннам (обычно в виде решётчатых порталов и продольных распорок). В многоэтажных каркасных зданиях вместо вертикальных С. по колоннам нередко применяют сплошные железобетонные диафрагмы (см., например, Каркасно-панельные конструкции).
Принцип образования из плоских несущих конструкций жёсткого пространственного блока с помощью соответствующих систем С. используется также в мостах и сооружениях башенного типа.
Г. Ш. Подольский.
Связи институты
Свя'зи институ'ты в СССР, готовят инженеров для предприятий, организаций и учреждений радиосвязи, радиовещания, телевидения, проводной и почтовой связи. В 1975 работали 7 С. и.: Московский электротехнический институт связи (основан в 1921), Ленинградский электротехнический институт связиим. М. А. Бонч-Бруевича (1930), электротехнические — Одесский (1930, филиал в Киеве), Новосибирский (1953, филиал в Хабаровске), Ташкентский (1955), Куйбышевский (1956), Всесоюзный заочный (1937, в Москве, филиалы в Минске и Тбилиси). В институтах есть дневные и заочные отделения, в Ленинградском и Одесском, кроме того, вечерние, в Ленинградском, Московском и Ташкентском — подготовительные. Подготовка ведётся по специальностям: радиосвязь и радиовещание, автоматическая электросвязь, многоканальная электросвязь, радиотехника, конструирование и производство радиоаппаратуры, машины и оборудование связи, организация механизированной обработки экономия, информации, экономика и организация связи. Срок обучения 5—6 лет. В Московском, Ленинградском, Одесском и Всесоюзном заочном С. и. имеется аспирантура. Московскому и Ленинградскому С. и. предоставлено право принимать к защите докторские и кандидатские диссертации, Одесскому — кандидатские. См. также Радиотехническое образование.
Связи механические
Свя'зи механи'ческие, ограничения, налагаемые на положение или движение механической системы. Обычно С. м. осуществляются с помощью каких-нибудь тел. Примеры таких С. м.: поверхность, по которой скользит или катится тело; нить, на которой подвешен груз; шарниры, соединяющие звенья механизмов, и т. п. Если положения точек механической системы по отношению к данной системе отсчёта определять их декартовыми координатами xk, ук, zk(k = 1,2..., n, где n — число точек системы), то ограничения, налагаемые С. м., могут быть выражены в виде равенств (или неравенств), связывающих координаты xk, yk, zk, их первые производные по времени
, yk, (т. е. скорости точек системы) и время t.С. м., налагающие ограничения только на положения (координаты) точек системы и выражающиеся уравнениями вида
f (..., xk, yk, zk,..., t) = 0, (1)
называются геометрическими. Если же С. м. налагают ограничения ещё и на скорости точек системы, то они называются кинематическими, а их уравнения имеют вид:
j (..., xk, yk, zk,...,
, yk,,..., t) = 0. (2)Когда уравнение (2) может быть проинтегрировано по времени, соответствующая кинематическая связь называется интегрируемой и эквивалентна геометрической связи. Геометрические и интегрируемые кинематические связи носят общее название голономных С. м. (см. Голономные системы). Кинематические неинтегрируемые С. м. называются неголономными (см. Неголономные системы).
С. м., не изменяющиеся со временем, называются стационарными (их уравнения не содержат явно время t), а С. м., изменяющиеся со временем, называются нестационарными. Наконец, С. м., при которых каждому возможному перемещению точек системы соответствует перемещение прямо противоположное по направлению, называются двусторонними [их уравнения выражаются равенствами вида (1), (2)], а С. м., не удовлетворяющие этому условию (например, гибкая нить, допускающая перемещение вдоль нити только в одном направлении), называются односторонними и их уравнения выражаются неравенством вида f (..., xk, yk, zk,...) ³ 0.
Методы решения задач механики существенно зависят от характера С. м., налагаемых на систему. Эффект действия С. м. можно учитывать введением соответствующих сил, называются реакциями связей; при этом для определения реакций (или для их исключения) к уравнениям равновесия или движения системы должны присоединяться уравнения связей вида (1) или (2). С. м., для которых сумма элементарных работ всех реакций на любом возможном перемещении системы равна нулю, называются идеальными (например, лишённая трения поверхность или гибкая нить). Для механических систем с идеальными С. м. можно сразу получить уравнения равновесия или движения, не содержащие реакций связей, используя возможных перемещений принцип,Д'Аламбера — Лагранжа принцип или Лагранжа уравнения.
- Предыдущая
- 79/86
- Следующая

