Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Математика. Утрата определенности. - Клайн Морис - Страница 92
По поводу отношения Гильберта к интуиционизму Вейль сказал в 1927 г.: «То, что с этой [интуиционистской] точки зрения надежна лишь часть классической математики, причем далеко не самая лучшая, — горький, но неизбежный вывод. Гильберту была невыносима мысль об этой ране, нанесенной математике».
И логицизм, и интуиционизм Гильберт обвинял в том, что они не смогли доказать непротиворечивость математики. В работе 1927 г. Гильберт торжественно заявил:
Математика есть наука, в которой отсутствует гипотеза. Для ее обоснования я не нуждаюсь ни, как Кронекер, в господе боге, ни, как Пуанкаре [который считал, что доказать непротиворечивость системы, использующей математическую индукцию, невозможно], в предположении об особой, построенной на принципе полной индукции способности нашего разума, ни, как Брауэр, в первоначальной интуиции, наконец, ни, как Рассел и Уайтхед, в аксиомах бесконечности, редукции [сводимости] или полноты, которые являются подлинными гипотезами содержательного характера и, сверх того, вовсе не правдоподобными.
В 20-е годы XX в. Гильберт сформулировал свой собственный подход к обоснованию математики и до конца жизни работал над ним. Среди работ, опубликованных Гильбертом в 20-е годы и в начале 30-х годов, особое место по богатству идей занимает работа «О бесконечности» ([44]*, 1925), где он формулирует замысел своей теории: «Эта теория ставит своей целью установить определенную надежность математического метода» ([50], с. 340).
Первый из тезисов Гильберта состоял в том, что, поскольку логика, развиваясь, непременно включает в себя математические идеи и поскольку для сохранения классической математики нам неизбежно приходится привлекать внелогические аксиомы типа аксиомы бесконечности, правильный подход к математике должен включать понятия и аксиомы не только логики, но и математики. Кроме того, логика должна чем-то оперировать, и это «что-то» состоит из внелогических конкретных понятий (таких, как понятие числа), воспринимаемых интуитивно еще до того, как мы начинаем рассуждать логически.
Принятые Гильбертом логические аксиомы несущественно отличаются от аксиом Рассела, хотя Гильберт ввел больше аксиом, поскольку его не интересовало построение наиболее экономной системы аксиом логики. Но так как, согласно Гильберту, математика невыводима из логики (математика не следствие логики, а автономная научная дисциплина), то аксиоматика как логики, так и математики должна включать математические и логические аксиомы. Гильберт считал также, что математику надежнее всего рассматривать не как фактическое знание, а как формальную, т.е. абстрактную, дисциплину, занимающуюся преобразованием символов безотносительно к их значению (хотя неформально значение символов и их отношение к реальности также учитываются). Доказательства теорем должны сводиться к преобразованиям символов, производимым по определенным правилам логического вывода.
Чтобы избежать неоднозначности языка и бессознательного использования интуитивных представлений, приводящих к одним парадоксам, исключить другие парадоксы и достичь строгости доказательств и объективности, Гильберт счел необходимым записать все утверждения логики и математики в символической форме. Хотя символы и могли иметь некоторое интуитивно воспринимаемое значение, в предложенной Гильбертом трактовке математики они не нуждались в интерпретации. Некоторые символы могли даже означать бесконечные множества, поскольку Гильберт намеревался включить их в свою теорию, но в таком случае они оказались бы лишенными интуитивного образа. Такие «идеальные элементы», как их называл Гильберт, необходимы для построения всей математики; поэтому их введение обоснованно, хотя сам Гильберт считал, что в реальном мире существует лишь конечное число объектов: материя состоит из конечного числа элементов.
Суть рассуждений Гильберта можно понять, если воспользоваться следующей аналогией. Иррациональное число лишено интуитивного смысла. Хотя мы можем построить отрезки, длины которых выражаются иррациональными числами, эти длины сами по себе еще не создают никакого интуитивного представления об иррациональных числах.Тем не менее иррациональные числа как идеальные элементы с необходимостью входят даже в элементарную математику. Именно поэтому математики и шли на использование иррациональных чисел, хотя те до 70-х годов XIX в. не имели логического обоснования. Гильберт занял аналогичную позицию в отношении комплексных чисел, т.е. чисел, содержащих выражение √−1. Комплексные числа не имеют прямых аналогов среди вещественных чисел, тем не менее они позволяют сформулировать некоторые общие теоремы, например теорему о том, что каждое алгебраическое уравнение n-й степени имеет ровно nкорней, и делают возможной теорию функций комплексного переменного, оказавшуюся необычайно полезной даже в физических исследованиях. Независимо от того, означают ли символы объекты, имеющие интуитивный смысл или лишенные его, все знаки и символы понятий и операций рассматриваются как чисто формальные элементы той системы, которую мы строим. По мнению Гильберта, при обосновании математики элементами математического мышления следует считать символыи высказывания,т.е. комбинации (или строки) символов. Формалисты надеялись «купить» определенность за подходящую цену, и этой ценой было манипулирование символами, лишенными всякого смысла.
К счастью, символика логики была разработана в конце XIX — начале XX вв. (гл. VIII), поэтому у Гильберта с самого начала было под рукой все необходимое. В частности, он располагал такими символами, как — ~ (не), ∙ (и), \/ (или),
(следует), (существует). Все они были первичными, или неопределяемыми, понятиями. Что же касается самой математики, то для нее символические обозначения были разработаны давно.По замыслу Гильберта из выбранных им аксиом логики должны были следовать все законы логики Аристотеля. Применимость этих аксиом вряд ли вызывала у кого-нибудь сомнения, например, если X, Y и Z — высказывания, то одна из аксиом Гильберта гласит: «Если X, то X \/ Y» (иными словами, «Если истинно X, то истинно также X или Y»). Другая аксиома сводится к неформальному утверждению о том, что если из X следует Y, то из «Z или X» следует «Z или Y». Особое место в логике Гильберта занимает схема заключения. На неформальном уровне она утверждает, что если формула А верна и если из формулы А следует формула В, то формула В верна. В аристотелевой логике этот закон называется modus ponens(модус поненс). Гильберт не хотел также отказываться от закона исключенного третьего и с помощью специального приема записал в символическом виде и этот закон. Тот же прием позволил формализовать и аксиому выбора, которая, несомненно, принадлежит к числу математических аксиом. Подобный прием позволял избегать явного употребления слова «все» — Гильберт надеялся, что это поможет ему обойти все парадоксы.
В любой области математики, имеющей дело с числами, существуют (в соответствии с программой Гильберта) аксиомы арифметики. Например, существует аксиома «из a = bследует a' = b'», утверждающая, что если два целых числа aи bравны, то числа, непосредственно следующие за ними (интуитивно — ближайшие большие a,соответственно b,целые числа), также равны. В аксиомы арифметики входит и аксиома математической индукции (ср. [72]). Как правило, аксиомы имеют отношение к нашему опыту, связанному с наблюдением явлений природы, или к миру уже существующих математических знаний.
Формальная система, представляющая теорию множеств, должна содержать (записанные в виде комбинаций символов) аксиомы, которые указывают, какие множества допустимо образовывать. Например, подобные аксиомы могут допускать составление множества, являющегося объединением двух множеств, и множества всех подмножеств данного множества.
- Предыдущая
- 92/136
- Следующая

